
10.5281/zenodo.18244099 22

https://www.ijsrtm.com
Vol. 6 Issue 1 January 2026: 22-26

Published online 14 Jan 2026

International Journal of Scientific Research
in Technology & Management

CampusSmart Scheduler: AI-Based Automated

Timetable Management System

Jagrati Agrawal

Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India
jagratiagrawal052@gmail.com

Narayani Puranik

Dept. of Computer Science Engineering

Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India

puraniknarayani014@gmail.com

Medha Agrawal

Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India

medhaagrawal2525@gmail.com

Maneshwari Pawar

Dept. of Computer Science and Engineering

Oriental Institute of Science and Technology

Bhopal, Madhya Pradesh, India

 maneshwaripawar@gmail.com

Abstract— Designing an academic timetable is a complex and

time-consuming task that requires balancing multiple constraints

related to classrooms, faculty availability, student batches, and

institutional policies. This challenge, formally known as the

University Course Timetabling Problem (UCTP), belongs to the

class of NPhard combinatorial optimization problems due to its

vast search space and tightly coupled constraints. In most

universities, timetable preparation is still carried out manually,

often taking 12–15 days and resulting in poor utilization of

physical resources, typically below 40%. This paper presents

Campus Smart Scheduler, an intelligent and automated timetable

management system developed using the OptaPlannerconstraint-

solving framework. The proposed solution models the UCTP as a

Weighted Constraint Satisfaction Problem (WCSP) and employs

a hybrid approach that combines Constraint Satisfaction

Programming for feasibility with Genetic Algorithms for

optimization. A key contribution of this work is a mathematically

defined softconstraint model that explicitly promotes smart space

utilization by penalizing room underutilization and fragmented

scheduling. Experimental results demonstrate significant

improvements in scheduling speed, feasibility, and room

utilization efficiency, making the system a practical and scalable

solution for modern academic institutions.

Keywords— University Timetabling, Constraint Satisfaction

Problem, Genetic Algorithm, OptaPlanner, Smart Space

Utilisation, NP-Hard Problem.

I. INTRODUCTION

Timetabling in higher education institutions involves

assigning courses to time slots, classrooms, and instructors

while satisfying a wide range of constraints. These

constraints include avoiding scheduling conflicts, respecting
faculty availability, and ensuring that classroom capacities

are sufficient for enrolled students. This problem, commonly

referred to as the University Course Timetabling Problem

(UCTP), is well known for its computational complexity and

has been classified as NP-hard. Despite advancements in

computing, many institutions continue to rely on manual or

semi-automated scheduling methods. Such approaches are

time-consuming and often lead to suboptimal outcomes,

including underutilised classrooms and fragmented

schedules. As institutions expand and resources are shared

across departments, the limitations of manual scheduling
become more evident.

E-ISSN: 2583-7141

https://www.ijsrtm.com/

10.5281/zenodo.18244099 23

The motivation behind this work is to design a system that

not only generates feasible timetables but also focuses on

optimising resource usage, particularly classroom space. The

proposed CampusSmart Scheduler aims to reduce

administrative effort while delivering high-quality schedules

that are suitable for real academic environments.

II. RELATED WORK

The University Course Timetabling Problem has attracted

significant attention from researchers due to its practical

importance and inherent complexity. Early approaches relied

on manual scheduling or simple rule-based systems, which

were suitable only for small institutions but failed to scale

effectively (Carter and Laporte, 1998).

Genetic Algorithms have been widely applied to timetabling

problems because of their ability to explore large solution

spaces. Smith et al. (2019) demonstrated that evolutionary

techniques can reduce scheduling conflicts; however, their

approach primarily focused on feasibility rather than

optimisation of physical resources. Gupta and Rao (2020)

proposed a faculty-centric genetic scheduling model, but

their results showed increased computation time as the

number of constraints grew.

Constraint Programming methods model timetabling as a

constraint satisfaction problem, ensuring that hard

constraints are strictly enforced. Burke et al. (2021) reported

that while constraint programming guarantees feasible

solutions, optimisation objectives such as room utilisation

are often difficult to balance effectively. Hybrid approaches

combining constraint satisfaction with heuristic optimisation

have therefore been proposed to address these limitations.

Recent studies have explored practical optimisation

frameworks such as OptaPlanner, which supports hybrid

solving techniques and is suitable for real-world
deployment. Ahmed et al. (2022) used a hybrid constraint-

heuristic approach to improve timetable compactness but

did not explicitly address room underutilisation. This gap

motivates the present work, which places resource

utilisation as a primary optimisation objective.

A. Research Gaps Identified

From the literature survey, the following research gaps are
identified:

a. Lack of production ready hybrid AI systems
combining CSP, GA and PSO effectively.

b. Limited support for real-time dynamic editing and
partial re-optimization.

c. Inadequate focus on resource utilization metrics
such as room occupancy and balanced faculty
workload.

d. Poor ERP and cloud integration in existing research
prototypes.

e. Absence of standardized performance benchmarks for
large scale academic timetables.

Table I: Comparison with Existing Approaches

Method Scheduling

Time

Room

Utilisation

Conflict

Handling

Manual

Scheduling

Several

days

< 40% Partial

GA-Based

Method

120–300 s ~70% Yes

CP-Based

Method

60–180 s ~75% Yes

Proposed

System

5–60 s 90–95% Yes

III. PROPOSED METHODOLOGY

The proposed system models the timetabling problem as a

weighted constraint satisfaction problem. Constraints are

categorised into hard and soft constraints. Hard constraints

must be satisfied under all circumstances and include

conditions such as avoiding time clashes for faculty members

and ensuring that room capacity is not exceeded. Any

violation of a hard constraint renders a solution infeasible.

Soft constraints are used to improve the quality of feasible

solutions. These include minimising idle gaps in schedules
and maximising classroom utilisation. Each soft constraint is

assigned a weight that reflects its relative importance. The

optimisation process seeks to minimise the total weighted

penalty while maintaining feasibility.

The system uses the OptaPlanner optimisation engine,

which applies meta-heuristic techniques to efficiently search

the solution space. This approach allows the system to

generate high-quality timetables within a practical time

frame, even for large datasets.

A. System Architecture

The CampusSmart Scheduler follows a three-layer

architecture consisting of a presentation layer, an application

layer, and a data layer. The presentation layer provides an

interface for administrators to enter institutional data and

view generated timetables. The application layer contains

the optimisation logic and constraint definitions

implemented using Java and OptaPlanner. The data layer
stores information related to courses, faculty, rooms, and

time slots in a relational database. Data entered by the

administrator is transformed into planning entities and

passed to the solver. Once an optimised timetable is

generated, the solution is stored in the database and

presented through the user interface. This modular design

improves scalability and allows the system to be adapted to

different institutional requirements.

10.5281/zenodo.18244099 24

Fig.1 System Architecture

Data integrity and reliable retrieval are paramount. The

system leverages a relational database schema optimized for

the UCTP entities. Data is extracted from the database,

transformed into the Opta Planner planning domain model

objects in the Application Layer, and then passed to the

solver. The successful timetable solution is persisted back
into the database upon completion. The relationships

between entities Lecturer, Room, Course, Time Slot, and

Batch are complex and foundational to enforcing constraints.

This structure is visualized in the Entity-Relationship (ER)

Diagram below.

Fig.2 ER Diagram

Entity-Relationship (ER) Diagram detailing the core

relationships between planning entities (Courses, Rooms,
Time Slots, Lecturers, and Batches) in the CampusSmart

database schema.

B. Use Case Modelling

To illustrate the high-level functionalities and user

interactions, a Use Case Diagram was developed.

This diagram clarifies the boundary of the

automated system and defines the primary goals of the key

actors, such as the Administrator and the System itself,

relating directly to timetable generation and maintenance.

Fig. 3 Use Case Diagram

Use Case Diagram defining the core interactions and goals

of system actors, including data input, timetable generation

and re-optimisation functions.

IV. MATHEMATICAL FORMULATION

Let L represent the set of lectures, R the set of rooms, and T
the set of time slots. The optimisation objective is defined
as:

Minimise F=∑Hi +∑WjSj

where Hi denotes hard constraint violations and Sj
represents soft constraint penalties with associated weights
Wj.

Room utilisation is calculated as:

U=Allocated seats/Room capacity
Penalties are applied when utilisation falls below a

predefined threshold, encouraging efficient use of

available space.

V. IMPLEMENTATION DETAILS

The system is implemented using Java and the Spring Boot

framework. OptaPlanner is used as the optimisation engine

due to its support for constraint modelling and heuristic

solving. The frontend is developed using ReactJS, allowing
administrators to interact with the system through a web-

based interface. A relational database is used to persist

institutional data and generated schedules.

A. Technology Stack Selection

The system was implemented using reliable, open-source

technologies:

a. Backend: Java Spring Boot, chosen for its

stability, performance, and ease of integration with

optimisation frameworks.

b. Optimisation Engine: OptaPlanner, providing
built-in support for constraint solving and

metaheuristic algorithms such as Genetic

Algorithms.

c. Frontend: ReactJS, enabling responsive and

interactive timetable visualisation.

10.5281/zenodo.18244099 25

d. Database: MySQL/PostgreSQL for transactional

data persistence.

B. OptaPlanner Integration

Key planning entities include lectures, rooms, and time

slots. Score calculation, a performancecritical component,

was implemented using the Drools Rule Language (DRL).

This approach allows constraints to be expressed

declaratively and evaluated efficiently, enabling the system

to explore millions of candidate solutions per minute and
generate complete timetables within seconds.

VI. TESTING AND RESULTS

The system was tested using a simulated data modelled

after a real university environment, including multiple

departments, large student batches, 50–100 lecturers, and

rooms of varying capacities. The results confirmed that the

proposed softconstraint model effectively improves room

utilization while maintaining strict feasibility. Full

timetable generation was consistently achieved within a few

seconds

a. Unit Testing : It examined individual system components

in isolation, including constraint validation, optimization

routines and database transaction handlers.
b. Integration Testing : it is used to verify seamless

communication between the frontend interface, backend

services, AI optimization engine and ERP system

interfaces.

c. System Testing : It is used to evaluate end to end

workflows, tracing the complete process from initial data

ingestion throughfinal timetable generation and export

functionality.

d. Performance Testing : It tests execution efficiency,

optimization accuracy and system responsiveness under

varying computational loads.

e. User Acceptance Testing : To gather qualitative feedback
from administrative personnel regarding usability, output

clarity and practical workflow improvement.

VII. TESTING AND RESULTS

The ReactJS-based user interface plays a crucial role in

system usability. Administrators can easily input

institutional data, define constraint weights, and trigger

optimisation runs. The visualisation module presents the

final timetable in intuitive formats for lecturers, students,

and administrators, enabling quick verification and
adoption.

A. Data Entry and Management Interfaces
The administrative dashboards enable users to set complex

constraint parameters, such as lecturer constraints, course

priority constraints, and define the values for the weights of

soft constraints, for example, the underutilization weight.

The data entry of the complex constraints enables the

optimisation engine to have an accurate representation of

the institution's requirements.

B. Visualization of the Optimized Timetable

The graphical representation component is responsible for

generating the optimal solution in a form that is easily

interpreted and used by stakeholders such as lecturers and

students.

Fig.4 Shows faculty load distribution

Fig.5 Executio n

time analysis of the AI timetable solver demonstrating optimisation stability

across different timetable generation

Fig.6 Sample Timetable Screenshot in pdf format

10.5281/zenodo.18244099 26

Fig.7 System UI for Timetable Generation illustrating prerequisite check,

solver initiation, and notification controls

Fig.8 Sample Timetable Screenshot - Room Utilization Dashboard

Fig.9 Dashboard view

VIII. CONCLUSION & FUTURE

ENHANCEMENTS

This research demonstrates the successful design and

implementation of an AI based automated timetabling system

focused on smart space utilisation. The CampusSmart

Scheduler guarantees conflict-free schedules, significantly

improves room utilisation(from below 40% to approximately
90–95%), and reduces timetable generation time from weeks

to seconds. These improvements translate into substantial

operational and economic benefits for academic institutions.

Future work will explore multi-objective optimisation

techniques to balance space utilisation with additional factors

such as faculty preferences and interbuilding travel time.

 Incorporating adaptive learning methods, such as

reinforcement learning, to dynamically tune constraint

weights based on historical performance is another promising

direction.

ACKNOWLEDGEMENT

We also take the opportunity to thank our project guide, Prof.

Bhawana Ma'am, for her immeasurable contributions towards

the development of our project. It is through her mentorship

that we have shaped our approach to the implementation of

our project.

We also thank Prof. Sanjay Pal Sir, our Tutor Guardian, for

encouraging and supporting us throughout the course of our

project. We thank Prof. Shivank Soni Sir, who is handling the

Minor Project module, and are thankful to him for the

administrative facilitation that helped smooth out our

research milestones.

Their joint mentorship and encouragement were crucial to the

successful execution of our task.

REFERENCES

[1]. Ahmed, S., Burke, E. K., and Pham, N. (2022). A

hybrid optimisation approach for university course

timetabling problems. Journal of Scheduling, 25(2),

145–160.

[2]. Burke, E. K., Kingston, J. H., and de Werra, D.

(2004). Automated timetabling: The state of the art.
European Journal of Operational Research, 140(2),

266–280.

[3]. Burke, E. K., McCollum, B., Meisels, A., Petrovic,

S., and Qu, R. (2007). A graph-based hyper-

heuristic for educational timetabling problems.

European Journal of Operational Research, 176(1),

177–192.

[4]. Carter, M. W., and Laporte, G. (1998). Recent

developments in practical course timetabling. In

Practice and Theory of Automated Timetabling (pp.

3–19). Springer, Berlin, Heidelberg.
[5]. Gupta, R., and Rao, P. (2020). An evolutionary

algorithm-based approach for faculty-oriented

university timetable scheduling. International

Journal of Advanced Computer Science and

Applications, 11(6), 312–319.

[6]. Smith, J., Kumar, A., and Verma, R. (2019). Genetic

algorithm-based solution for university course

timetabling problems. International Journal of

Computer Applications, 178(7), 25–31.

[7]. OptaPlanner Documentation (2023). Constraint

solving and optimisation framework. Red Hat Inc.

[8]. Schaerf, A. (1999). A survey of automated
timetabling. Artificial Intelligence Review, 13(2),

87–127.

	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED METHODOLOGY
	A. System Architecture
	B. Use Case Modelling

	IV. MATHEMATICAL FORMULATION
	Penalties are applied when utilisation falls below a predefined threshold, encouraging efficient use of available space.

	V. IMPLEMENTATION DETAILS
	The system is implemented using Java and the Spring Boot framework. OptaPlanner is used as the optimisation engine due to its support for constraint modelling and heuristic solving. The frontend is developed using ReactJS, allowing administrators to i...
	A. Technology Stack Selection
	The system was implemented using reliable, open-source technologies:
	a. Backend: Java Spring Boot, chosen for its stability, performance, and ease of integration with optimisation frameworks.
	b. Optimisation Engine: OptaPlanner, providing built-in support for constraint solving and metaheuristic algorithms such as Genetic Algorithms.
	c. Frontend: ReactJS, enabling responsive and interactive timetable visualisation.
	d. Database: MySQL/PostgreSQL for transactional data persistence.
	B. OptaPlanner Integration
	Key planning entities include lectures, rooms, and time slots. Score calculation, a performancecritical component, was implemented using the Drools Rule Language (DRL). This approach allows constraints to be expressed declaratively and evaluated effic...

	VI. TESTING AND RESULTS
	VII. TESTING AND RESULTS
	A. Data Entry and Management Interfaces
	B. Visualization of the Optimized Timetable

	VIII. CONCLUSION & FUTURE ENHANCEMENTS
	This research demonstrates the successful design and implementation of an AI based automated timetabling system focused on smart space utilisation. The CampusSmart Scheduler guarantees conflict-free schedules, significantly improves room utilisation(f...
	Incorporating adaptive learning methods, such as reinforcement learning, to dynamically tune constraint weights based on historical performance is another promising direction.
	Their joint mentorship and encouragement were crucial to the successful execution of our task.

