https://www.ijsrtm.com
Vol. 6 Issue 1 January 2026: 22-26
Published online 14 Jan 2026

E-ISSN: 2583-7141

International Journal of Scientific Research
in Technology & Management

WWW.ISRTM.COM

INTERNATIONAL
JOURNAL OF

SCIENTIFIC-RESEARCH
IN OLOGY &
ANAGEMENT

CampusSmart Scheduler: Al-Based Automated
Timetable Management System

Jagrati Agrawal
Dept. of Computer Science and Engineering
Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India
jagratiagrawal052@gmail.com

Narayani Puranik
Dept. of Computer Science Engineering
Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India
puraniknarayani0l4@gmail.com

Abstract— Designing an academic timetable is a complex and
time-consuming task that requires balancing multiple constraints
related to classrooms, faculty availability, student batches, and
institutional policies. This challenge, formally known as the
University Course Timetabling Problem (UCTP), belongs to the
class of NPhard combinatorial optimization problems due to its
vast search space and tightly coupled constraints. In most
universities, timetable preparation is still carried out manually,
often taking 12-15 days and resulting in poor utilization of
physical resources, typically below 40%. This paper presents
Campus Smart Scheduler, an intelligent and automated timetable
management system developed using the OptaPlannerconstraint-
solving framework. The proposed solution models the UCTP as a
Weighted Constraint Satisfaction Problem (WCSP) and employs
a hybrid approach that combines Constraint Satisfaction
Programming for feasibility with Genetic Algorithms for
optimization. A key contribution of this work is a mathematically
defined softconstraint model that explicitly promotes smart space
utilization by penalizing room underutilization and fragmented
scheduling. Experimental results demonstrate significant
improvements in scheduling speed, feasibility, and room
utilization efficiency, making the system a practical and scalable
solution for modern academic institutions.

10.5281/zen0d0.18244099

Medha Agrawal
Dept. of Computer Science and Engineering
Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India
medhaagrawal2525@gmail.com

Maneshwari Pawar
Dept. of Computer Science and Engineering
Oriental Institute of Science and Technology
Bhopal, Madhya Pradesh, India
maneshwaripawar@gmail.com

Keywords— University Timetabling, Constraint Satisfaction

Problem, Genetic Algorithm, OptaPlanner, Smart Space
Utilisation, NP-Hard Problem.

I. INTRODUCTION
Timetabling in higher education institutions involves

assigning courses to time slots, classrooms, and instructors
while satisfying a wide range of constraints. These
constraints include avoiding scheduling conflicts, respecting
faculty availability, and ensuring that classroom capacities
are sufficient for enrolled students. This problem, commonly
referred to as the University Course Timetabling Problem
(UCTP), is well known for its computational complexity and
has been classified as NP-hard. Despite advancements in
computing, many institutions continue to rely on manual or
semi-automated scheduling methods. Such approaches are
time-consuming and often lead to suboptimal outcomes,
including underutilised classrooms and fragmented
schedules. As institutions expand and resources are shared
across departments, the limitations of manual scheduling
become more evident.

22

https://www.ijsrtm.com/

The motivation behind this work is to design a system that
not only generates feasible timetables but also focuses on
optimising resource usage, particularly classroom space. The
proposed CampusSmart Scheduler aims to reduce
administrative effort while delivering high-quality schedules
that are suitable for real academic environments.

Il. RELATED WORK

The University Course Timetabling Problem has attracted
significant attention from researchers due to its practical
importance and inherent complexity. Early approaches relied
on manual scheduling or simple rule-based systems, which
were suitable only for small institutions but failed to scale
effectively (Carter and Laporte, 1998).

Genetic Algorithms have been widely applied to timetabling
problems because of their ability to explore large solution
spaces. Smith et al. (2019) demonstrated that evolutionary
techniques can reduce scheduling conflicts; however, their
approach primarily focused on feasibility rather than
optimisation of physical resources. Gupta and Rao (2020)
proposed a faculty-centric genetic scheduling model, but
their results showed increased computation time as the
number of constraints grew.

Constraint Programming methods model timetabling as a
constraint satisfaction problem, ensuring that hard
constraints are strictly enforced. Burke et al. (2021) reported
that while constraint programming guarantees feasible
solutions, optimisation objectives such as room utilisation
are often difficult to balance effectively. Hybrid approaches
combining constraint satisfaction with heuristic optimisation
have therefore been proposed to address these limitations.

Recent studies have explored practical optimisation
frameworks such as OptaPlanner, which supports hybrid
solving techniques and is suitable for real-world
deployment. Ahmed et al. (2022) used a hybrid constraint-
heuristic approach to improve timetable compactness but
did not explicitly address room underutilisation. This gap
motivates the present work, which places resource
utilisation as a primary optimisation objective.

A. Research Gaps Identified

From the literature survey, the following research gaps are
identified:

a. Lack of production ready hybrid Al systems
combining CSP, GA and PSO effectively.

b. Limited support for real-time dynamic editing and
partial re-optimization.

c. Inadequate focus on resource utilization metrics
such as room occupancy and balanced faculty
workload.

d. Poor ERP and cloud integration in existing research
prototypes.

10.5281/zen0d0.18244099

€. Absence of standardized performance benchmarks for
large scale academic timetables.

Table I: Comparison with Existing Approaches

Method Scheduling Room Conflict
Time Utilisation Handling

Manual Several < 40% Partial
Scheduling days
GA-Based 120-300s ~70% Yes
Method
CP-Based 60-180 s ~75% Yes
Method
Proposed 5-60s 90-95% Yes
System

I1l. PROPOSED METHODOLOGY

The proposed system models the timetabling problem as a
weighted constraint satisfaction problem. Constraints are
categorised into hard and soft constraints. Hard constraints
must be satisfied under all circumstances and include
conditions such as avoiding time clashes for faculty members
and ensuring that room capacity is not exceeded. Any
violation of a hard constraint renders a solution infeasible.

Soft constraints are used to improve the quality of feasible
solutions. These include minimising idle gaps in schedules
and maximising classroom utilisation. Each soft constraint is
assigned a weight that reflects its relative importance. The
optimisation process seeks to minimise the total weighted
penalty while maintaining feasibility.

The system uses the OptaPlanner optimisation engine,
which applies meta-heuristic techniques to efficiently search
the solution space. This approach allows the system to
generate high-quality timetables within a practical time
frame, even for large datasets.

A. System Architecture

The CampusSmart Scheduler follows a three-layer
architecture consisting of a presentation layer, an application
layer, and a data layer. The presentation layer provides an
interface for administrators to enter institutional data and
view generated timetables. The application layer contains
the optimisation logic and constraint definitions
implemented using Java and OptaPlanner. The data layer
stores information related to courses, faculty, rooms, and
time slots in a relational database. Data entered by the
administrator is transformed into planning entities and
passed to the solver. Once an optimised timetable is
generated, the solution is stored in the database and
presented through the user interface. This modular design
improves scalability and allows the system to be adapted to
different institutional requirements.

23

Client Layer (Presentation)

Data Layer (Persistonce)

Fig.1 System Architecture

Data integrity and reliable retrieval are paramount. The
system leverages a relational database schema optimized for
the UCTP entities. Data is extracted from the database,
transformed into the Opta Planner planning domain model
objects in the Application Layer, and then passed to the
solver. The successful timetable solution is persisted back
into the database upon completion. The relationships
between entities Lecturer, Room, Course, Time Slot, and
Batch are complex and foundational to enforcing constraints.
This structure is visualized in the Entity-Relationship (ER)
Diagram below.

CONSTRAINT_VIOLATION_LOG

Fig.2 ER Diagram

Entity-Relationship (ER) Diagram detailing the core
relationships between planning entities (Courses, Rooms,
Time Slots, Lecturers, and Batches) in the CampusSmart
database schema.

B. Use Case Modelling

To illustrate the high-level functionalities and user
interactions, a Use Case Diagram was developed.
This diagram clarifies the boundary of the

10.5281/zen0d0.18244099

automated system and defines the primary goals of the key
actors, such as the Administrator and the System itself,
relating directly to timetable generation and maintenance.

System Boundary: CampusSmart Scheduler

...........

Fig. 3 Use Case Diagram

Use Case Diagram defining the core interactions and goals
of system actors, including data input, timetable generation
and re-optimisation functions.

IV. MATHEMATICAL FORMULATION

Let L represent the set of lectures, R the set of rooms, and T

the set of time slots. The optimisation objective is defined

as:

Minimise F=> Hi +Y WjSj

where Hi denotes hard constraint violations and Sj

\r/e\z}_)resents soft constraint penalties with associated weights
j.

Room utilisation is calculated as:

U=Allocated seats/Room capacity

Penalties are applied when utilisation falls below a
predefined threshold, encouraging efficient use of
available space.

V. IMPLEMENTATION DETAILS

The system is implemented using Java and the Spring Boot
framework. OptaPlanner is used as the optimisation engine
due to its support for constraint modelling and heuristic
solving. The frontend is developed using ReactJS, allowing
administrators to interact with the system through a web-
based interface. A relational database is used to persist
institutional data and generated schedules.

A. Technology Stack Selection
The system was implemented using reliable, open-source
technologies:

a. Backend: Java Spring Boot, chosen for its
stability, performance, and ease of integration with
optimisation frameworks.

b. Optimisation Engine: OptaPlanner, providing
built-in support for constraint solving and
metaheuristic algorithms such as Genetic
Algorithms.

c. Frontend: React]S, enabling
interactive timetable visualisation.

responsive and

24

d. Database: MySQL/PostgreSQL for transactional
data persistence.

B. OptaPlanner Integration

Key planning entities include lectures, rooms, and time
slots. Score calculation, a performancecritical component,
was implemented using the Drools Rule Language (DRL).
This approach allows constraints to be expressed
declaratively and evaluated efficiently, enabling the system
to explore millions of candidate solutions per minute and
generate complete timetables within seconds.

VI. TESTING AND RESULTS

The system was tested using a simulated data modelled
after a real university environment, including multiple
departments, large student batches, 50-100 lecturers, and
rooms of varying capacities. The results confirmed that the
proposed softconstraint model effectively improves room
utilization while maintaining strict feasibility. Full
timetable generation was consistently achieved within a few
seconds

a. Unit Testing : It examined individual system components
in isolation, including constraint validation, optimization
routines and database transaction handlers.

b. Integration Testing : it is used to verify seamless
communication between the frontend interface, backend
services, Al optimization engine and ERP system
interfaces.

c. System Testing : It is used to evaluate end to end
workflows, tracing the complete process from initial data
ingestion throughfinal timetable generation and export
functionality.

d. Performance Testing : It tests execution efficiency,
optimization accuracy and system responsiveness under
varying computational loads.

e. User Acceptance Testing : To gather qualitative feedback
from administrative personnel regarding usability, output
clarity and practical workflow improvement.

VII. TESTING AND RESULTS

The ReactJS-based user interface plays a crucial role in
system usability. Administrators can easily input
institutional data, define constraint weights, and trigger
optimisation runs. The visualisation module presents the
final timetable in intuitive formats for lecturers, students,
and administrators, enabling quick verification and
adoption.

A. Data Entry and Management Interfaces

The administrative dashboards enable users to set complex
constraint parameters, such as lecturer constraints, course
priority constraints, and define the values for the weights of
soft constraints, for example, the underutilization weight.
The data entry of the complex constraints enables the
optimisation engine to have an accurate representation of

10.5281/zen0d0.18244099

the institution’s requirements.

B. Visualization of the Optimized Timetable

The graphical representation component is responsible for
generating the optimal solution in a form that is easily
interpreted and used by stakeholders such as lecturers and
students.

zation Faculty Workioad S

Faculty Workload Distribution

;;qu‘{;m

Fig.4 Shows faculty load distribution

Solver Performance Over Time

Timetable 4/1/2026

Generated: 4/1/2026, 1:01:14 PM

Fig.5 Executio o : ’ o n
time analysis of the Al timetable solver demonstrating optimisation stability
across different timetable generation

Fig.6 Sample Timetable Screenshot in pdf format

25

Fl
RRMEERY Generate Timetable

Generate Timetable

Prerequisites Check

Faculty Courses Rooms Batches

62 67 43 22

Al Timetable Genesator

Fig.7 System Ul for Timetable Generation illustrating prerequisite check,
solver initiation, and notification controls

Analyties

6037ms

Room Utiization

Fig.8 Sample Timetable Screenshot - Room Utilization Dashboard

(E) EouFLEX Dashboard

Ltest Generated Timetatle

Fig.9 Dashboard view

VIIl. CONCLUSION & FUTURE

ENHANCEMENTS

This research demonstrates the successful design and
implementation of an Al based automated timetabling system
focused on smart space utilisation. The CampusSmart
Scheduler guarantees conflict-free schedules, significantly
improves room utilisation(from below 40% to approximately
90-95%), and reduces timetable generation time from weeks
to seconds. These improvements translate into substantial
operational and economic benefits for academic institutions.
Future work will explore multi-objective optimisation
techniques to balance space utilisation with additional factors
such as faculty preferences and interbuilding travel time.

10.5281/zen0d0.18244099

Incorporating adaptive learning methods, such as
reinforcement learning, to dynamically tune constraint
weights based on historical performance is another promising
direction.

ACKNOWLEDGEMENT

We also take the opportunity to thank our project guide, Prof.
Bhawana Ma'am, for her immeasurable contributions towards
the development of our project. It is through her mentorship
that we have shaped our approach to the implementation of
our project.

We also thank Prof. Sanjay Pal Sir, our Tutor Guardian, for
encouraging and supporting us throughout the course of our
project. We thank Prof. Shivank Soni Sir, who is handling the
Minor Project module, and are thankful to him for the
administrative facilitation that helped smooth out our
research milestones.

Their joint mentorship and encouragement were crucial to the
successful execution of our task.

REFERENCES

[1]. Ahmed, S., Burke, E. K., and Pham, N. (2022). A
hybrid optimisation approach for university course
timetabling problems. Journal of Scheduling, 25(2),
145-160.

[2]. Burke, E. K., Kingston, J. H., and de Werra, D.
(2004). Automated timetabling: The state of the art.
European Journal of Operational Research, 140(2),
266-280.

[3]. Burke, E. K., McCollum, B., Meisels, A., Petrovic,
S., and Qu, R. (2007). A graph-based hyper-
heuristic for educational timetabling problems.
European Journal of Operational Research, 176(1),
177-192.

[4]. Carter, M. W., and Laporte, G. (1998). Recent
developments in practical course timetabling. In
Practice and Theory of Automated Timetabling (pp.
3-19). Springer, Berlin, Heidelberg.

[5]. Gupta, R., and Rao, P. (2020). An evolutionary

algorithm-based approach for faculty-oriented
university timetable scheduling. International
Journal of Advanced Computer Science and

Applications, 11(6), 312-319.
[6]. Smith, J., Kumar, A., and Verma, R. (2019). Genetic
algorithm-based solution for university course

timetabling problems. International Journal of
Computer Applications, 178(7), 25-31.
[7]. OptaPlanner Documentation (2023). Constraint

solving and optimisation framework. Red Hat Inc.

[8]. Schaerf, A. (1999). A survey of automated
timetabling. Artificial Intelligence Review, 13(2),
87-127.

26

	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED METHODOLOGY
	A. System Architecture
	B. Use Case Modelling

	IV. MATHEMATICAL FORMULATION
	Penalties are applied when utilisation falls below a predefined threshold, encouraging efficient use of available space.

	V. IMPLEMENTATION DETAILS
	The system is implemented using Java and the Spring Boot framework. OptaPlanner is used as the optimisation engine due to its support for constraint modelling and heuristic solving. The frontend is developed using ReactJS, allowing administrators to i...
	A. Technology Stack Selection
	The system was implemented using reliable, open-source technologies:
	a. Backend: Java Spring Boot, chosen for its stability, performance, and ease of integration with optimisation frameworks.
	b. Optimisation Engine: OptaPlanner, providing built-in support for constraint solving and metaheuristic algorithms such as Genetic Algorithms.
	c. Frontend: ReactJS, enabling responsive and interactive timetable visualisation.
	d. Database: MySQL/PostgreSQL for transactional data persistence.
	B. OptaPlanner Integration
	Key planning entities include lectures, rooms, and time slots. Score calculation, a performancecritical component, was implemented using the Drools Rule Language (DRL). This approach allows constraints to be expressed declaratively and evaluated effic...

	VI. TESTING AND RESULTS
	VII. TESTING AND RESULTS
	A. Data Entry and Management Interfaces
	B. Visualization of the Optimized Timetable

	VIII. CONCLUSION & FUTURE ENHANCEMENTS
	This research demonstrates the successful design and implementation of an AI based automated timetabling system focused on smart space utilisation. The CampusSmart Scheduler guarantees conflict-free schedules, significantly improves room utilisation(f...
	Incorporating adaptive learning methods, such as reinforcement learning, to dynamically tune constraint weights based on historical performance is another promising direction.
	Their joint mentorship and encouragement were crucial to the successful execution of our task.

